NuFIT 3.2: Three-neutrino fit based on data available in January 2018

Ivan Esteban, M. C. Gonzalez-Garcia, Alvaro Hernandez-Cabezudo, Michele Maltoni, Ivan Martinez-Soler, Thomas Schwetz

Departament de Física Quàntica i Astrofísica and Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain

Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.

C.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3840, USA

Institut für Kernphysik, Karlsruher Institut für Technologie (KIT), D-76021 Karlsruhe, Germany

Instituto de Física Teórica UAM/CSIC, Calle de Nicolás Cabrera 13–15, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain

E-mail: ivan.esteban@fqa.ub.edu, maria.gonzalez-garcia@stonybrook.edu, alvaro.cabezudo@kit.edu, michele.maltoni@csic.es, ivanj.m@csic.es, schwetz@kit.edu

Abstract: We present updated results for our global analysis of solar, atmospheric, reactor, and accelerator neutrino data in the framework of three-neutrino oscillations. We also provide \(\chi^2 \) tables for the various one- and two-dimensional projections of the global analysis. If you use these results, please refer to both [1] and [2]. Data sets which have been updated with respect to NuFIT 3.1 are marked by the “⇒” tag.

Solar experiments

- **External information**: Standard Solar Model [3].
- Chlorine total rate [4], 1 data point.
- Gallex & GNO total rates [5], 2 data points.
- SAGE total rate [6], 1 data point.
- SK1 full energy and zenith spectrum [7], 44 data points.
- SK2 full energy and day/night spectrum [8], 33 data points.
- SK3 full energy and day/night spectrum [9], 42 data points.
- SK4 2055-day day-night asymmetry [10] and 2365-day energy spectrum [11], 24 data points.
- SNO combined analysis [12], 7 data points.
- Borexino Phase-I 741-day low-energy data [13], 33 data points.
- Borexino Phase-I 246-day high-energy data [14], 6 data points.
- Borexino Phase-II 408-day low-energy data [15], 42 data points.
Atmospheric experiments

- **External information**: Atmospheric neutrino fluxes [16].
- IceCube/DeepCore 3-year data [17, 18], 64 data points.

Reactor experiments

- KamLAND separate DS1, DS2, DS3 spectra [19] with Daya-Bay reactor ν fluxes [20], 69 data points.
- Double-Chooz FD-1/ND and FD-II/ND spectral ratios, with 455-day (FD-I), 363-day (FD-II) and 258-day (ND) exposures [21], 56 data points.
- Daya-Bay 1230-day EH2/EH1 and EH3/EH1 spectral ratios [22], 70 data points.
- Reno 1500-day FD/ND spectral ratios [23], 26 data points.

Accelerator experiments

- MINOS $10^{7.1} \times 10^{20}$ pot ν_μ-disappearance data [24], 39 data points.
- MINOS 3.36×10^{20} pot $\bar{\nu}_\mu$-disappearance data [24], 14 data points.
- MINOS 10.6×10^{20} pot ν_e-appearance data [25], 5 data points.
- MINOS 3.3×10^{20} pot $\bar{\nu}_e$-appearance data [25], 5 data points.
- T2K 14.93×10^{20} pot ν_μ-disappearance data [26], 55 data points.
- T2K 14.93×10^{20} pot ν_e-appearance data [26], 39 data points.
- T2K 7.62×10^{20} pot $\bar{\nu}_\mu$-disappearance data [26], 55 data points.
- T2K 7.62×10^{20} pot $\bar{\nu}_e$-disappearance data [26], 23 data points.

⇒ NOνA 8.85×10^{20} pot ν_μ-disappearance data [27], 72 data points.
⇒ NOνA 8.85×10^{20} pot ν_e-appearance data [27], 19 data points.

Description of the χ^2 data tables

We provide two gzip-compressed files (one for Normal and one for Inverted Ordering) containing the χ^2 data tables for our global analysis. Each file is divided into 21 sections, identified by a unique tag and corresponding to a particular one- or two-dimensional projections. The tags and the meaning of the data columns for each section are listed below (note that $\ell = 1$ for NO and $\ell = 2$ for IO).

<table>
<thead>
<tr>
<th>N°</th>
<th>Section tag</th>
<th>1st column</th>
<th>2nd column</th>
<th>3rd column</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td># T13/T12</td>
<td>$\sin^2 \theta_{13}$</td>
<td>$\sin^2 \theta_{12}$</td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>2</td>
<td># T13/DMS</td>
<td>$\sin^2 \theta_{13}$</td>
<td>$\log_{10}(\Delta m^2_{21}/[\text{eV}^2])$</td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>3</td>
<td># T12/DMS</td>
<td>$\sin^2 \theta_{12}$</td>
<td>$\log_{10}(\Delta m^2_{21}/[\text{eV}^2])$</td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>4</td>
<td># T13/T23</td>
<td>$\sin^2 \theta_{13}$</td>
<td>$\sin^2 \theta_{23}$</td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>5</td>
<td># T13/DMA</td>
<td>$\sin^2 \theta_{13}$</td>
<td>$\Delta m^2_{3\ell}/[10^{-3}\text{ eV}^2]$</td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>6</td>
<td># T23/DMA</td>
<td>$\sin^2 \theta_{23}$</td>
<td>$\Delta m^2_{3\ell}/[10^{-3}\text{ eV}^2]$</td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>#</td>
<td>Section tag</td>
<td>1st column</td>
<td>2nd column</td>
<td>3rd column</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>7</td>
<td># T13/DCP</td>
<td>$\sin^2 \theta_{13}$</td>
<td>δ_{CP} [deg]</td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>8</td>
<td># T23/DCP</td>
<td>$\sin^2 \theta_{23}$</td>
<td>δ_{CP} [deg]</td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>9</td>
<td># DMA/DCP</td>
<td>$\Delta m^2_{3\ell} / [10^{-3} \text{ eV}^2]$</td>
<td>δ_{CP} [deg]</td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>10</td>
<td># T12/T23</td>
<td>$\sin^2 \theta_{12}$</td>
<td>$\sin^2 \theta_{23}$</td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>11</td>
<td># T12/DCP</td>
<td>$\sin^2 \theta_{12}$</td>
<td>δ_{CP} [deg]</td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>12</td>
<td># T12/DMA</td>
<td>$\sin^2 \theta_{12}$</td>
<td>$\Delta m^2_{3\ell} / [10^{-3} \text{ eV}^2]$</td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>13</td>
<td># DMS/T23</td>
<td>$\log_{10}(\Delta m^2_{21} / [\text{eV}^2])$</td>
<td>$\sin^2 \theta_{23}$</td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>14</td>
<td># DMS/DCP</td>
<td>$\log_{10}(\Delta m^2_{21} / [\text{eV}^2])$</td>
<td>δ_{CP} [deg]</td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>15</td>
<td># DMS/DMA</td>
<td>$\log_{10}(\Delta m^2_{21} / [\text{eV}^2])$</td>
<td>$\Delta m^2_{3\ell} / [10^{-3} \text{ eV}^2]$</td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>16</td>
<td># T13</td>
<td>$\sin^2 \theta_{13}$</td>
<td></td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>17</td>
<td># T12</td>
<td>$\sin^2 \theta_{12}$</td>
<td></td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>18</td>
<td># T23</td>
<td>$\sin^2 \theta_{23}$</td>
<td></td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>19</td>
<td># DCP</td>
<td>δ_{CP} [deg]</td>
<td></td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>20</td>
<td># DMS</td>
<td>$\log_{10}(\Delta m^2_{21} / [\text{eV}^2])$</td>
<td></td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>21</td>
<td># DMA</td>
<td>$\Delta m^2_{3\ell} / [10^{-3} \text{ eV}^2]$</td>
<td></td>
<td>$\Delta \chi^2$</td>
</tr>
</tbody>
</table>

References

[12] SNO collaboration, B. Aharmim et al., Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory, 1109.0763.