NuFIT 5.0: Three-neutrino fit based on data available in July 2020

Ivan Esteban, a M. C. Gonzalez-Garcia, a,b,c Michele Maltoni, d Thomas Schwetz, e Albert Zhou e

a Departament de Física Quàntica i Astrofísica and Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain

b Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain.

c C.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3840, USA

d Instituto de Física Teórica UAM/CSIC, Calle de Nicolás Cabrera 13–15, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain

e Institut für Kernphysik, Karlsruher Institut für Technologie (KIT), D-76021 Karlsruhe, Germany

E-mail: ivan.esteban@fqa.ub.edu, maria.gonzalez-garcia@stonybrook.edu, michele.maltoni@csic.es, schwetz@kit.edu, albert.zhou@kit.edu

ABSTRACT: We present updated results for our global analysis of solar, atmospheric, reactor, and accelerator neutrino data in the framework of three-neutrino oscillations. We also provide χ^2 tables for various one-, two- and three-dimensional projections of the global analysis. If you use these results, please refer to both [1] and [2].

Solar experiments

- External information: Standard Solar Model [3].
- Chlorine total rate [4], 1 data point.
- Gallex & GNO total rates [5], 2 data points.
- SAGE total rate [6], 1 data point.
- SK1 full energy and zenith spectrum [7], 44 data points.
- SK2 full energy and day/night spectrum [8], 33 data points.
- SK3 full energy and day/night spectrum [9], 42 data points.
- SK4 2970-day day-night asymmetry and energy spectrum [10], 24 data points.
- SNO combined analysis [11], 7 data points.
- Borexino Phase-I 741-day low-energy data [12], 33 data points.
- Borexino Phase-I 246-day high-energy data [13], 6 data points.
- Borexino Phase-II 408-day low-energy data [14], 42 data points.
Atmospheric experiments

- **External information**: Atmospheric neutrino fluxes [15].
- IceCube/DeepCore 3-year data [16, 17], 64 data points.
- SK1-4 328 kiloton years [18], χ^2 map [19] added to our global analysis.

Reactor experiments

- KamLAND separate DS1, DS2, DS3 spectra [20] with Daya Bay reactor ν fluxes [21], 69 data points.
- Double-Chooz FD/ND spectral ratio, with 1276-day (FD), 587-day (ND) exposures [22], 26 data points.
- Daya Bay 1958-day EH2/EH1 and EH3/EH1 spectral ratios [23], 52 data points.
- Reno 2908-day FD/ND spectral ratio [24], 45 data points.

Accelerator experiments

- MINOS 10.71 $\times 10^{20}$ pot ν_μ-disappearance data [25], 39 data points.
- MINOS 3.36 $\times 10^{20}$ pot $\bar{\nu}_\mu$-disappearance data [25], 14 data points.
- MINOS 10.6 $\times 10^{20}$ pot ν_e-appearance data [26], 5 data points.
- MINOS 3.3 $\times 10^{20}$ pot $\bar{\nu}_e$-appearance data [26], 5 data points.
- T2K 19.7 $\times 10^{20}$ pot ν_μ-disappearance data [27], 35 data points.
- T2K 19.7 $\times 10^{20}$ pot ν_e-appearance data [27], 23 data points for the CCQE and 16 data points for the CC1π samples.
- T2K 16.3 $\times 10^{20}$ pot $\bar{\nu}_\mu$-disappearance data [27], 35 data points.
- T2K 16.3 $\times 10^{20}$ pot ν_e-appearance data [27], 23 data points.
- NOvA 13.6 $\times 10^{20}$ pot ν_μ-disappearance data [28], 76 data points.
- NOvA 13.6 $\times 10^{20}$ pot ν_e-appearance data [28], 13 data points.
- NOvA 12.5 $\times 10^{20}$ pot $\bar{\nu}_\mu$-disappearance data [28], 76 data points.
- NOvA 12.5 $\times 10^{20}$ pot $\bar{\nu}_e$-appearance data [28], 13 data points.

Description of the χ^2 data tables

We provide four xz-compressed files, containing the χ^2 data tables for both Normal and Inverted Ordering of our global «w/o SK-atm» and «with SK-atm» analyses. Each file is divided into 22 sections, identified by a unique tag and corresponding to a particular one-, two- or three-dimensional projection. The tags and the meaning of the data columns for each section are listed below (note that $\ell = 1$ for NO and $\ell = 2$ for IO).

<table>
<thead>
<tr>
<th>N^o</th>
<th>Section tag</th>
<th>1$^{\text{st}}$ column</th>
<th>2$^{\text{nd}}$ column</th>
<th>3$^{\text{rd}}$ column</th>
<th>4$^{\text{th}}$ column</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td># T23/DMA/DCP</td>
<td>$\sin^2 \theta_{23}$</td>
<td>$\Delta m^2_{3\ell} / [10^{-3} \text{ eV}^2]$</td>
<td>$\delta_{\text{CP}} / [\text{deg}]$</td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>2</td>
<td># T13/T12</td>
<td>$\sin^2 \theta_{13}$</td>
<td>$\sin^2 \theta_{12}$</td>
<td></td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>3</td>
<td># T13/DMS</td>
<td>$\sin^2 \theta_{13}$</td>
<td>$\log_{10} (\Delta m^2_{21} / [\text{eV}^2])$</td>
<td></td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>4</td>
<td># T12/DMS</td>
<td>$\sin^2 \theta_{12}$</td>
<td>$\log_{10} (\Delta m^2_{21} / [\text{eV}^2])$</td>
<td></td>
<td>$\Delta \chi^2$</td>
</tr>
<tr>
<td>N°</td>
<td>Section tag</td>
<td>1st column</td>
<td>2nd column</td>
<td>3rd column</td>
<td>4th column</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>5</td>
<td># T13/T23</td>
<td>$\sin^2 \theta_{13}$</td>
<td>$\sin^2 \theta_{23}$</td>
<td>$\Delta \chi^2$</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td># T13/DMA</td>
<td>$\sin^2 \theta_{13}$</td>
<td>$\Delta m^2_{3\ell}/[10^{-3} \text{ eV}^2]$</td>
<td>$\Delta \chi^2$</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td># T23/DMA</td>
<td>$\sin^2 \theta_{23}$</td>
<td>$\Delta m^2_{3\ell}/[10^{-3} \text{ eV}^2]$</td>
<td>$\Delta \chi^2$</td>
<td>—</td>
</tr>
<tr>
<td>8</td>
<td># T13/DCP</td>
<td>$\sin^2 \theta_{13}$</td>
<td>$\delta_{\text{CP}}/\text{[deg]}$</td>
<td>$\Delta \chi^2$</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td># T23/DCP</td>
<td>$\sin^2 \theta_{23}$</td>
<td>$\delta_{\text{CP}}/\text{[deg]}$</td>
<td>$\Delta \chi^2$</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td># DMA/DCP</td>
<td>$\Delta m^2_{3\ell}/[10^{-3} \text{ eV}^2]$</td>
<td>$\sin^2 \theta_{23}$</td>
<td>$\Delta \chi^2$</td>
<td>—</td>
</tr>
<tr>
<td>11</td>
<td># T12/T23</td>
<td>$\sin^2 \theta_{12}$</td>
<td>$\sin^2 \theta_{23}$</td>
<td>$\Delta \chi^2$</td>
<td>—</td>
</tr>
<tr>
<td>12</td>
<td># T12/DCP</td>
<td>$\sin^2 \theta_{12}$</td>
<td>$\sin^2 \theta_{23}$</td>
<td>$\Delta \chi^2$</td>
<td>—</td>
</tr>
<tr>
<td>13</td>
<td># T12/DMA</td>
<td>$\sin^2 \theta_{12}$</td>
<td>$\Delta m^2_{3\ell}/[10^{-3} \text{ eV}^2]$</td>
<td>$\Delta \chi^2$</td>
<td>—</td>
</tr>
<tr>
<td>14</td>
<td># DMS/T23</td>
<td>$\log_{10}(\Delta m^2_{21}/[\text{eV}^2])$</td>
<td>$\sin^2 \theta_{23}$</td>
<td>$\Delta \chi^2$</td>
<td>—</td>
</tr>
<tr>
<td>15</td>
<td># DMS/DCP</td>
<td>$\log_{10}(\Delta m^2_{21}/[\text{eV}^2])$</td>
<td>$\delta_{\text{CP}}/\text{[deg]}$</td>
<td>$\Delta \chi^2$</td>
<td>—</td>
</tr>
<tr>
<td>16</td>
<td># DMS/DMA</td>
<td>$\log_{10}(\Delta m^2_{21}/[\text{eV}^2])$</td>
<td>$\Delta m^2_{3\ell}/[10^{-3} \text{ eV}^2]$</td>
<td>$\Delta \chi^2$</td>
<td>—</td>
</tr>
<tr>
<td>17</td>
<td># T13</td>
<td>$\sin^2 \theta_{13}$</td>
<td>$\Delta \chi^2$</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>18</td>
<td># T12</td>
<td>$\sin^2 \theta_{12}$</td>
<td>$\Delta \chi^2$</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>19</td>
<td># T23</td>
<td>$\sin^2 \theta_{23}$</td>
<td>$\Delta \chi^2$</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>20</td>
<td># DCP</td>
<td>$\delta_{\text{CP}}/\text{[deg]}$</td>
<td>$\Delta \chi^2$</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>21</td>
<td># DMS</td>
<td>$\log_{10}(\Delta m^2_{21}/[\text{eV}^2])$</td>
<td>$\Delta \chi^2$</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>22</td>
<td># DMA</td>
<td>$\Delta m^2_{3\ell}/[10^{-3} \text{ eV}^2]$</td>
<td>$\Delta \chi^2$</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

References

[11] SNO collaboration, B. Aharmim et al., Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory, 1109.0763.

[16] IceCube collaboration, M. Aartsen et al., Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data, Phys. Rev. D91 (2015) 072004 [1410.7227].

