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Abstract: We present updated results for our global analysis of solar, atmospheric, re-
actor, and accelerator neutrino data in the framework of three-neutrino oscillations. We
also provide χ2 tables for various one-, two- and three-dimensional projections of the global
analysis. If you use these results, please refer to both [1] and [2]. Data sets which have
been updated with respect to NuFIT 6.0 are marked by the “⇒” tag.

Solar experiments

• External information: Standard Solar Models [3].
• Chlorine total rate [4], 1 data point.
• Gallex & GNO total rates [5], 2 data points.
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• SAGE total rate [6], 1 data point.
• SK1 1496-day energy and zenith spectrum [7], 44 data points.
• SK2 791-day energy and day/night spectrum [8], 33 data points.
• SK3 548-day energy and day/night spectrum [9], 42 data points.
• SK4 2970-day energy and day/night spectrum [10], 46 data points.
• SNO combined analysis [11], 7 data points.
• Borexino Phase-I 741-day low-energy data [12], 33 data points.
• Borexino Phase-I 246-day high-energy data [13], 6 data points.
• Borexino Phase-II 1292-day low-energy data [14], 192 data points.
• Borexino Phase-III 1432-day low-energy data [15], 120 data points.

Atmospheric experiments

• External information: Atmospheric neutrino fluxes [16].
⇒ IC23 IceCube/DeepCore 8-year data (2011-2019) [17], 200 data points.
◦ IC24 IceCube/DeepCore 9.3-year data (2012-2021) χ2 map [18, 19] added to our global

analysis.
◦ SK1-5 484.2 kiloton-year data [20], χ2 map [21] added to our global analysis.

Reactor experiments

⇒ External information: Daya Bay reactor neutrino fluxes [22].
• KamLAND separate DS1, DS2, DS3 spectra [23], 69 data points.

⇒ SNO+ 1.46 kiloton-year spectrum including both Dataset I & II [24], 46 data points.
⇒ JUNO 59.1-day spectrum [25], 66 data points (χ2 marginalized over ∆m2

3ℓ before inclusion
in the global fit, as no information on this parameter is provided by the collaboration).

• Double-Chooz FD/ND spectral ratio, with 1276-day (FD), 587-day (ND) exposures [26],
26 data points.

• Daya Bay 3158-day separate EH1, EH2, EH3 spectra [27], 78 data points.
⇒ Reno 3800-day FD/ND spectral ratio [28], 26 data points.

Accelerator experiments

• MINOS 10.71× 1020 pot νµ-disappearance data [29], 39 data points.
• MINOS 3.36× 1020 pot ν̄µ-disappearance data [29], 14 data points.
• MINOS 10.6× 1020 pot νe-appearance data [30], 5 data points.
• MINOS 3.3× 1020 pot ν̄e-appearance data [30], 5 data points.
• T2K 21.4× 1020 pot νµ-disappearance data [31], 28 data points.
• T2K 21.4 × 1020 pot νe-appearance data [31], 9 data points for the CCQE and 7 data

points for the CC1π samples.
• T2K 16.3× 1020 pot ν̄µ-disappearance data [32], 19 data points.
• T2K 16.3× 1020 pot ν̄e-appearance data [33], 9 data points.
• NOvA 26.6× 1020 pot νµ-disappearance data [34], 22 data points.
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• NOvA 26.6× 1020 pot νe-appearance data [34], 15 data points.
• NOvA 12.5× 1020 pot ν̄µ-disappearance data [35], 76 data points.
• NOvA 12.5× 1020 pot ν̄e-appearance data [35], 13 data points.

Description of the χ2 data tables

We provide four xz-compressed files, containing the χ2 data tables for both Normal and
Inverted Ordering of our global «IC23 w/o SK-atm» and «IC24 with SK-atm» analyses.
Each file is divided into 22 sections, identified by a unique tag and corresponding to a
particular one-, two- or three-dimensional projection. The tags and the meaning of the
data columns for each section are listed below (note that ℓ = 1 for NO and ℓ = 2 for IO).

N◦ Section tag 1st column 2nd column 3rd column 4th column
1 # T23/DMA/DCP sin2 θ23 ∆m2

3ℓ

/
[10−3 eV2] δCP

/
[deg] ∆χ2

2 # T13/T12 sin2 θ13 sin2 θ12 ∆χ2 —
3 # T13/DMS sin2 θ13 log10

(
∆m2

21

/
[eV2]

)
∆χ2 —

4 # T12/DMS sin2 θ12 log10
(
∆m2

21

/
[eV2]

)
∆χ2 —

5 # T13/T23 sin2 θ13 sin2 θ23 ∆χ2 —
6 # T13/DMA sin2 θ13 ∆m2

3ℓ

/
[10−3 eV2] ∆χ2 —

7 # T23/DMA sin2 θ23 ∆m2
3ℓ

/
[10−3 eV2] ∆χ2 —

8 # T13/DCP sin2 θ13 δCP
/
[deg] ∆χ2 —

9 # T23/DCP sin2 θ23 δCP
/
[deg] ∆χ2 —

10 # DMA/DCP ∆m2
3ℓ

/
[10−3 eV2] δCP

/
[deg] ∆χ2 —

11 # T12/T23 sin2 θ12 sin2 θ23 ∆χ2 —
12 # T12/DCP sin2 θ12 δCP

/
[deg] ∆χ2 —

13 # T12/DMA sin2 θ12 ∆m2
3ℓ

/
[10−3 eV2] ∆χ2 —

14 # DMS/T23 log10
(
∆m2

21

/
[eV2]

)
sin2 θ23 ∆χ2 —

15 # DMS/DCP log10
(
∆m2

21

/
[eV2]

)
δCP

/
[deg] ∆χ2 —

16 # DMS/DMA log10
(
∆m2

21

/
[eV2]

)
∆m2

3ℓ

/
[10−3 eV2] ∆χ2 —

17 # T13 sin2 θ13 ∆χ2 — —
18 # T12 sin2 θ12 ∆χ2 — —
19 # T23 sin2 θ23 ∆χ2 — —
20 # DCP δCP

/
[deg] ∆χ2 — —

21 # DMS log10
(
∆m2

21

/
[eV2]

)
∆χ2 — —

22 # DMA ∆m2
3ℓ

/
[10−3 eV2] ∆χ2 — —
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